SEDUM INCE (CRASSULACEAE), A NEW SPECIES FROM SOUTHERN ANATOLIA

H. 'T HART* \& K. ALPINAR \dagger

Abstract

The newly described white-flowered annual Sedum ince closely resembles S. criocarpum and the annual forms of S. hispanicum (S. longibracteatum), but differs from the former by its alternate instead of verticillate leaves. and from the latter by the 5 -merous instead of 69 -merous flowers and the ripe follicles which are divergent instead of patent and lack the distinct lips along the ventral suture. Molecular phylogenetic analyses indicate that S. ince is but distantly related to S. eriocarpum as well as to S. hispanicam. It belongs to a cytological distinct lineage of Sedum subgenus Gormania sporting a basic chromosome number of $x=7$. Within this lineage, however, S. ince holds a unique position and consequently it is classified in the monotypic S. serics Elegans.

Ke whords. Chloroplast DNA, Crassulaceae. flora of Turkey, new species, Sedum.

INTRODUCTION

In contrast to the Crassulaceae floras of Mexico, South Africa and Asia, the Mediterranean Crassulaceae flora comprises a high number (20%) of strictly annual species (Böttcher \& Jäger, 1984: ’t Hart, 1996). Annual Crassulaceae are usually quite variable in habit and gross morphology due to a direct response to variation in edaphic conditions during early development. However, most annual Mediterranean species are quite distinct and can be easily distinguished by different combinations of morphological characters, except for the species of the species-aggregate including the white-flowered S. hispanicum L. and S. rubens L. More than 20 segregate species and subspecies have been described for this aggregate from the Aegean region and Near East. However, there is little consensus on the validity and taxonomic status of most segregate taxa so far (Boissier, 1872; Rechinger, 1943; Chamberlain, 1972; 't Hart \& Alpmar, 1991a; 't Hart. 1996). Cytologically the S. hispanicum-rubens aggregate is extremely variable, comprising at least 25 different cytotypes ('t Hart \& Alpınar, 1991b; 't Hart \& van Ham, 1991; 't Hart, 1996).

As part of a biosystematic study of Turkish Sedum ('t Hart \& Alpınar, 1991a) we collected a large number of plants of these critical, white-flowered, annual Sedum taxa throughout the larger part of Turkey. In addition to the common and widely distributed S. criocarpum Sibth. \& Sm.. S. hispanicum, S. pallidum M. Bieb. (although predominantly perennial this species also belongs to this aggregate; 't Hart \& Alpınar,

[^0]1991b), S. steudelii Boiss., and S. rubens we collected a white-flowered, annual Sedum, that differed from the aforementioned species by a unique combination of flower, fruit and seed characters. We found it in southern Anatolia only (Table 1) and named it Sedum ince. The name of the new species is derived from the Turkish word 'ince" which means elegant (Latin: gracilis) and refers to the habit of the plants which have delicate, slender stems, relatively long pedicels, and small flowers.

Sedum ince 't Hart \& Alpınar, sp. nov.

Sedum annuum gracile, S. eriocarpo et S. hispanico proximum, a primo foliis alternis, flosculis minoribus, folliculis laevibus, seminibus pallide brunneis, a postremo floribus pentameris, folliculis suberectis ad divergentibus differt.
Type: cultivated at Utrecht Botanic Garden from seeds collceted in Turkey [prov. Konya, Aydos Dağı 19 km SE of Ereğli, near Sinanlı along the road to the village of Delimahmutlu, rocky limestone slopes near a graveyard, 1350m, 1991, Alpinar \& 't Hart AH793], 25 v 1992 [holo. ISTE (72678), iso. U (HRT-32001)].

Erect, usually simple, slender annual to 7 or rarely 10 cm high, glandular pubcscent. especially in upper part. Leaves alternate, sessile with a very short, truncate spur. oblong to linear, to 10 mm long, rounded, tercte, grey-green or glaucous-white. Inflorescence cymose with 11-13(4-18) flowers on 2 or 3, suberect, monochasial branches, rarely with subsidiary branches. Bracts 1, leaf-like. Peduncles slender. $1-1.5 \mathrm{~mm}$ long. Flowers 5 -merous, with 10 stamens. Sepals broadly sessile, basally connate, triangular, $0.6-0.8 \mathrm{~mm}$ long, acute. Petals basally free, ovate-oblong to elliptic, $3.5-5 \mathrm{~mm}$ long, acuminate, white sometimes tinged red. Filaments white, glabrous. Anthers oblong-globose, red. Styles distinct, c. 0.8 mm long. Nectary scales cuneate to quadrate-oblong, denticulate, yellow. Follicles suberect or divergent, smooth, pale brown. Seeds ovoid, pale brown, costate, apex acute. $2 \mathrm{n}=14$.

TAXONOMIC POSITION OF SEDUM INCE
 Cytological and morphological data

We collected seeds of Sedum ince at 5 locations (Table 1) on rocky or gravelly, limestone soils at $1350-1850 \mathrm{~m}$ altitude. Sceds of Mediterranean, annual Sedum species usually germinate within 3-7 days in high numbers when sown in the greenhouse in early spring. Seeds of S. ince, however, did not germinate that easily. They need a prolonged cold treatment (vernalization) and so far only seeds of accession HRT-32001 have germinated after spending a winter in a cold frame. The seedlings were subsequently brought into the greenhouse and cultivated like other annual Sedum.

At first sight flowering plants of Sedum ince (Fig. 1) are almost indistinguishable from S. eriocarpum subsp. orientale 't Hart ('t Hart. 1996) or the strictly annual form of S. hispanicum from southern Anatolia (Hatay) and the Near East (Israel, Lebanon, Syria and Saudi Arabia), which is also known as S. longibracteatum Fröd.

TABLE 1. Origin of the plants (HRT numbers refer to the accession-numbers of plants cultivated at the Utrecht Botanic Gardens and voucher specimens of the cultivated plants in the Utrecht herbarium: the ISTE numbers refer to voucher specimens in the herbarium of the Istanbul Faculty of Pharmacy). Accessions marked with an asterisk (HRT numbers) have been used in the chloroplast DNA analyses

Species	Origin
Phedimus spurius (M. Bieb.) 't Hart	Turkey (Ardahan); Yalnız̧̧am Geçidi. 2300m, HRT-31393*. ISTE 61127.
Prometheum aizoom (Fenzl) 't Hart	Turkey (Kahramanmaraş); Berit Dağı, c. 2500 m . HRT-31740*, ISTE 62223.
Prome theum semperviroides (M. Bieb.) H. Ohba	Turkey (Erzurum); Delibaba gorge, 17 km E of Horasan along the road to Ağrı, 1750 m, HRT 31153*, ISTE 60785.
Rosularia semporvivum (M. Bieb.) A. Berger	Turkey (Hatay); village of Arpalıuşağı, between Kırıkhan and Hassa, 900 m . HRT31674*. ISTE 62120.
Sedum acre L.	Turkey (Bolu); 6 km W of Mengen along the road to Dirgine. 200 m , HRT-30869*. ISTE 59479.
Sedum album L.	Spain (Teruel); 9km SE of Albarracin, 1350m. HRT-29329*.
Sedum eriocarpum Sibth. \& Sm. subsp. orientale 't Hart. $2 \mathrm{n}=14$	Turkey (Mugla); 21 km N of Kalkan along the road to Gölbent, 150 m, HRT-30294. Turkey (Manisa); Kırkağaç Dağı, above Kırkağaç, 950m. HRT-32487*, ISTE 65296.
Seclum eriocarpum Sibth. \& Sm. subsp. orientale 't Hart, 2n $=20$	Turkey (Denizli): Honaz Daği, 12 km N of Honǎ, 1550 m, HRT-32538*. ISTE 65355.
Seclum hispanicum L.	Turkey (Bolu); Yedigöller Milli Parki, 1150 m , HRT-30865*, ISTE 59475. Greece (Thrakia); Mesti, 6 km W of Avra along the road to Komotini, 150 m , HRT30220.
Sedum ince ${ }^{\text {a }}$ Hart \& Alpinar	Turkey (Konya); Aydos Dağı, foothills SE of Eregli, rocky slopes at Eşeçoban near Madde. $3-4 \mathrm{~km} \mathrm{~S}$ of Delimahmutlu along the road to Eğerkaya, greyish limestone pebbles, 1550 m , HRT-31987 \& 31989, ISTE 63264 \& 63266. Turkey (Konya); Aydos Dağı, foothills SE of Ereğli, rocky slopes along the road to Eğerkaya, S of Delimahmutlu, limestone. 1650-1850m, HRT-31993. ISTE 63270. Turkey (Konya); Aydos Dağı, 19 km SE of Ereğli, rocky slopes near Sinanlı along the road to village Delimahmutlu, near graveyard, limestone. 1350 m, HRT-32001*, ISTE 63278 \& 72678. Turkey (Niğde): Emli gorge, 9 km E of Cukurbağı, gravelly places at base of rocky

TABLE 1. (Contimued).

Sedum microcarpum Smith
limestone slopes, 1700 m , HRT-31825, ISTE 62379.

Israel (Coastal Carmel): Atlit. HRT-31112*. Sedum steudelii Boiss.

Turkey (Van); N of Muradiye. valley of the river Bendimahi, 1800 m . HRT-3/249*. ISTE 60911 .

FIG. 1. Flowering and fruiting specimens of Sedum ince 't Hart \& Alpinar from Aydos Dăgı. On the left a plant cultivated at Utrecht (HRT-32001), on the right a wild-collected fruiting specimen (HRT-31987).
(Fröderström, 1936, 1960; t Hart \& van Ham, 1991). Sedum ince and S. eriocarpum subsp. orientale both have crect stems with linear-oblong, obtuse or rounded leaves, spatulate to oblong, sparsely dentate nectary scales and divergent or suberect follicles (Fig. 1). However, the latter differs significantly by having leaves in whorls of four (at least at the base of the stem), stouter stems, larger flowers with shorter pedicels (subsessile), often somewhat verrucose or mamillate follicles gradually tapering into the style, and ovoid, dark brown or almost black seeds. Sedum ince and S. longibracteatum resemble each other in the alternate, oblong leaves, pale brown follicles and oblong-ovoid, brown seeds. The leaves of S. longibracteatum, however, tend to be more elliptic and rather subacute than obtuse or rounded, and, most significantly, its has 6-7-(-9-)merous flowers, with much larger, red-striped petals, cuneate, usually coarsely dentate scales and stellate patent follicles with very distinct lips along the ventral suture.

In contrast to the traditional view (Grisebach, 1843; Boissier; 1872; Berger, 1930; Fröderström, 1932; Chamberlain, 1972) Sedum eriocarpum and S. hispanicum are not closely related. Cytologically and morphologically the two species differ significantly and, moreover, they are scparated by a strong reproductive barrier ('t Hart, 1991. 1996). Accordingly they have been classified in different infrageneric taxa, i.e. Sedum eriocarpum in S. series Aithales (Webb \& Berth.) 't Hart and S. hispanicum in S. series Glauco-rubens Fröd., respectively. In addition to S. eriocarpum, Sedum series Aithales contains two more species, i.e. S. pallidum M. Bieb. and S. rubens L., whereas S. series Glauco-rubens also comprises S. steudelii Boiss. Because S. ince is quite distinct morphologically and by and large intermediate between S. series Aithales and S. series Glauco-rubens we have been unable to assign it unequivocally to either one of the two series. In order to learn more about the systematic position of S. ince we used the cultivated material in comparative cytological and molecular studies.

For our cytological studies we used root-tips which were fixed in Karpechenko's fixative and subsequently dehydrated, embedded in paraffin and sectioned at $15 \mu \mathrm{~m}$ (t Hart, 1985). The sections were stained according to Haidenhain's haematoxylin method and made permanent. Sedum ince has a chromosome number of $2 \mathrm{n}=14$. Its chromosomes are about $1 \mu \mathrm{~m}$ long and the karyotype is rather symmetrical (Fig. 2a). The chromosome number $2 \mathrm{n}=14$ is quite common in Sedum and has been reported for S. eriocarpum as well as S. hispanicum ('t Hart \& Alpınar, 1991a; 't Hart 1996). In S. hispanicum there is a polyploid series based on $\mathrm{x}=7$. The diploid cytotype ($2 \mathrm{n}=14$) is most common and comprises the perennial as well as the strictly annual forms (including S. longibracteatum; 't Hart and van Ham, 1991). The basic chromosome number of S. eriocarpum is $x=5$ or $x=10$, but dysploid cytotypes with chromosome numbers of $2 \mathrm{n}=8,2 \mathrm{n}=12,2 \mathrm{n}=14$, and $2 \mathrm{n}=16$ have been reported from southern Anatolia and Isracl ('t Hart and Alpınar, 1991b; 't Hart and van Ham, 1991; 't Hart, 1996). Although the chromosomes of S. ince are somewhat smaller than those of dysploid S. eriocarpum with a chromosome number of $2 \mathrm{n}=14$ and somewhat larger than those of diploid S. hispanicum the karyotypes of these three species do not differ significantly (Fig. 2).

FIG. 2. Chromosome complements of Anatolian species of the Leucosedum lineage of Sedum with the diploid chomosome number of $2 \mathrm{n}=14$: a, Sedum ince t Hart \& Alpinar. HRT-32001: b, Sedum hispanicum L.. HRT-30220: c, Sedum eriocarpum Sibth. \& Sm. subsp. orientale "t Hart, HRT-30294; d, Prometheum aizoon (Fenzl) 't Hart (after 't Hart \& Eggli, 1989).

Molecular data

For a rapid assessment of the systematic position of Sectum ince we amplified and sequenced the chloroplast DNA $\operatorname{trn} L(\mathrm{UAA})-\operatorname{trn} F(\mathrm{GAA})$ intergenic spacer (IGS; Taberlet et al., 1991; van Ham et al., 1994, Kim et al., 1996) and compared the aligned sequence with our Crassulaceae database of this intergenic spacer which presently contains about 200, mainly Eurasian taxa. As we expected from our morphological studies (leaf shape, testa ornamentation and insertion of the sepals) parsimony analysis of a wide taxonomic sample from our molecular data-set (results not shown) included S. ince in the Leucosedum clade (van Ham \& 't Hart, 1998) which is by and large identical to S. subgenus Gormania Clausen ('t Hart, 1995). Within this Leucosedum clade S. ince was included in a clade which also contained S. hispanicum, S. microcarpum (Smith) Schönland (\equiv Telmissa microcarpa (Smith) Boiss.). S. steudelii, and Prometheum (A. Berger) H. Ohba. The aligned trnL-tmF IGS sequences of a relevant subset of 12 taxa (including two outgroup species) is presented in Table 2. The results of a cladistic analysis of these 12 taxa is presented in Fig. 3.

In addition to the 20 phylogenetically informative base substitutions the aligned trnL-trnF IGS sequences contain several highly significant, large indels (4 bp or longer; van Ham et al., 1994). A 5 bp insertion (position 7 11) which is unique for species of the Leucosedum clade (though secondarily lost in Sedum microcarpum).
TABLE 2. Aligned sequences of the chloroplast DNA $\operatorname{tmL}(\mathrm{LAA})-\operatorname{trn} F(\mathrm{GAA})$ intergenic spacer of 12 Sedoideae (Crassulaceac). Spacer length is indicated at the end of the sequence. The length of the alignment is 310 bp . Dashes indicate alignment gaps

Species	Sequence				
	10	20	30	40	50
Phedimus spurius	AATCCC----	-CTAA-----	-----TAAA	GGATIATTTG	ATTACCTAAT
Sedum acre	AATCCC----	-CTAA ----	------CAAA	GTAGCATTTG	ATTCCCTAAT
Sedum album	AATCCCCTAA	TCTAA -----	-----TAAA	GTATCCTTTT	TTTACCTAAT
Sedum criocarpum $2 \mathrm{n}=14$	AATCCCCTAA	TCTAA-----	-----TAAA	GTATCATTTG	ATTACCTAAT
Sedum criocarpum $2 \mathrm{n}=20$	AATCCCCTAA	TCTAA-----	-----TAAA	GTATTATTTG	ATTACCTAAT
Rosularia sempervisum	AATCCCCTAA	TCGAATCCTA	ATCTAATAAA	GTATCATTTG	ATTACCTAAT
Sedum microcarpum	AAT-------	----------	------TAA	GTATCATTTG	ATTAACTAAT
Sedum hispanicum	AA'TCCC-TAA	TCTAA----	------TAAA	GTATCAGTTG	ATTACCT--
Sedum steudelii	AATCCCCTAA	TCTAA -----	------TAAA	GTATCATTTG	ATTACCTAAT
Sedum ince	AATCCCCTAA	TCTAAT----	-TCTAATAAA	GTATCATTTG	A----CTAAT
Prometheum aizoon	AATCCCCTAA	TCTAA ----	-----TAAA	GTACCATTTG	ATTACCTAAT
Prometherm sempervivoides	AATCCCCTAA	TCTAA -----	-----TAAA	GTATCATTTG	ATTACCTAAT
	60	70	80	90	100
Phedimus spurius	ACTTTTTCTC	CATACTCCCG	TTTCTTMT--	------CATT	AGTGGTTTCA
Sedum acre	TCTTTTTCTC	- ATACTCTCG	TTTCTTGG--	------CAT-	AGTATTTTCA
Sedum alhum	TCTTTTTCTC	-ATATTCTCG	TTTCTTTT--	------CAT-	AGTAGTMTCA
Sedum eriocarpum $2 \mathrm{n}=14$	TCTTTTTCTC	- ATATTGTCG	TTTCTTT---	----------	-----------
Sedum eriocarpum $2 \mathrm{n}=20$	TCTTTPTCTC	-ATATTCTCG	TTTCTTP	---	-----------

TABLE 2．（Continued）．

Species	Sequence				
	60	70	80	90	100
Rosularia sempervivum	TCTTGTTCTC	－ATATTCTCG	TTTCTHPT－－	－－－－－－CAT－	AgTAGTTTCC
Sedum microcarpum	TCTTTTMTTC	－ATATTCTCG	TTTCTITT－－	－－－－－－CAG－	AGTAGT－－CA
Sedum hispanicum	－－－－－－TTTC	－CTATTCGCG	TTTCTITTCT	TCTTTTCAT－	AgTAgTtica
Sedum steudelii	TCTTTMTTTC	－ATATTCTCG	TTTCTT「Tー－	－－CAT－	AGTAGTTTCA
Sedum ince	TCTTMTTCTC	－Atattctcg	TTTCTTTT－－	－－－－－CAT－	AgTAGTTTCA
Prometheum aizoon	TCTTHTTCTC	－AtAttctcg	TTTCTTTT－－	－－CAT－	AGTAGTTTTA
Prometheum sempervivoides	TCT＂ワTTCTC	－Atattcticg	TTTCTTTT－－	－－－－－CAT－	AGTAGTTTAA
	110	120	130	140	150
Phedimus spurius	AGCITGTTAT	CTITTCTTATT	CACCCTATT－	－AG	TTTACAACG－
Sedum acre	AgCtrgitat	gTrutcteat	CAACCTATTT	TATCTTACTT	TTTACAAAG－
Scdum alloum	AGCITGTTAT	GTTITCGCATT	CGACCAATTT	T－－－－－－－TT	T＇卫TACAAAA－
Sedum criocarpum $2 \mathrm{n}=14$					
Sedum criocarpum $2 \mathrm{n}=20$	－－－－－－－	－－－－－－－－－－－	－－－－－－－－－－	－－－－－－－－－－	
Rosularia sempervivum	AGCTTGTTAT	GTTTCTCATT	CAACCTATT－	－－－－－－－TPT	TTTACAAAA－
Sedum microcarpum	AGCTTGTTAT	GTTTCGCATT	CAATCTTTT－	－－－－－－－TT	TTTGTAAAAA
Sedum hispanicum	AgCtigttat	gTATCTCATT	CAATCCATT－	－－－－TT	TTTACAAAG－
Sedum steudelii	AGCTTGTTAT	GTTTTCCCATT	CAATCTATT－	－－－－－－－TT	TTTA？？AAA－
Sectum ince	AGCTTCTTAT	GTTTCTTATT	CAATTTCTT－	－－－－－－－－TT	TTTACAAAA－
Prometheum aicoon	AGCTTGTtat	GTITCTIATT	CAATCTATT－	－－－－－－－－TT	TTTACAAAA－
Prometheum sempervivoides	AGCTTGTTAT	GTTTCTTATT	CAATCTATT－	－－－－－－－TT	TTTAGAAAA－

TABLE 2. (Continued).

Species	Sequence				
	160	170	180	190	200
Phedimus spurius	-AGATCCTAT	AAAAA-TTGG	ATTCTCTTTT	CACAAACTTA	GAAAGTCTAG
Sedum acre	- AAATCCTAG	AAAAA-TTGG	ATTTCCTTAT	CCCAAACTTA	GAAAGTCTAG
Sectum album	- AAATCCTAA	ATAAA-TTTG	ATTCTATTAT	CACAAACTTA	GAAAGTCTAG
Sedum criocarpum $2 \mathrm{n}=14$	----------		----------	---- AGCTTA	GAAAGTCTAG
Sedum criocarpum $2 \mathrm{n}=20$	---	---	----------	---- AACTTA	GAAAGTCTAG
Rosularia sempervivum	-- ААТССТАA	AAAAA-TTGG	ATTCTATTAT	CACAAACTTA	GAAAGTCTAG
Sedum microcarpum	AAAATCCTAA	AAAAA-TTGG	ATTCTATTAT	CACAAACTTA	GAAAGTCTAG
Sedum hispaniclum	-GATTCCTAA	AAAAAATGGG	ATTCTATTCT	CACAAACTTC	GAAAGTCCCG
Sedum stecudelii	-GAATCCG?A	AAAAAATTGG	ATTTCGATTAT	CACAAACTTA	GAAAGTCTTG
Sectum ince	-TAATCCTAA	AAAAAATTGG	ATTCTATTAT	CACAAACTTC	GAAAGTCTAA
Prometheum aizoon	-GAATCCTAA	AAAAATTTGG	ATrCTATtat	CACAAACTTC	GAAAGTATAG
Prometheum sempervivoides	-GAATCCTAA	AAAAATTTGG	ATMCTATTAT	CACAAACTTC	GAAAGTCTAG
	210	220	230	240	250
Phedimus spurius	GGACTGTATA	AGACTTTAA -	----------	-----TAAAT	ACCCTTTCAT
Sedum acre	GCGCTGTATA	AGACTMTAAT	TGAATAAAGA	TTGAATAAAT	ACCCTTTTAT
Sedum alhum	GGACTGTATA	CGATTTTAA-	----------	-----TAAAT	ACCCTTTCAT
Sedum eriocarpum $2 \mathrm{n}=14$	GGACTGCATA	AGACTTTAA-	----------	TTTA?TAAAT	ACCCTTTCAT
Sedum criocarpum $2 \mathrm{n}=20$	gGACTGCATA	AGACTHTAA -	-----------	TTTAATAAAT	ACCCTITCAT

TABLE 2．（Continued）．

Species	Sequence				
	210	220	230	240	250
Rosularia sempervivum	GGACTGTATA	AGA－－－－－－－	－－－－－－－－－－	－－AAA	ACCCTTTCGT
Sedum microcarpum	GGGTTGTATA	AGACTTTAA－	－－－－－－－－－－	－－－－－TAAAA	ACCCTTTCAT
Sedum hispanicum	GGACTGTATA	AGACTGTAA－		－－－－－TAAAA	AGCCTTGCAT
Sedum stcudelii	GGGCGGTATA	AGACTTTAA－	－－－－－－－－－－－	－－－－－TAAAA	AGCCTTTCGT
Sectum ince	GGACTGTATA	AGACTTTAC－	－－－－－－－－－－	－－－－－TAAAA	ACCCTTTGAT
Prometheum aizoon	GGACTGTCTA	AGACTTTAA－	－－－－－－－－－－	－－－－－GAAAA	ACCCTTTCAT
Prometheum sempervivoides	GGACTGTCTA	AGACTITAA－	－－－－－－－－－－	－－－－TAAAA	ACCCTTTCAT
	260	270	280	290	300
Phedimus spurius	T上TTTT－AAT	TGACATAGCC	TCAAGTCATA	TAGTAAAATT	AGACTGATAC
Sedum acre	TTTTTTTTAT	TGACATAGCC	TCGCGTCATA	TCGTAAAATT	AAAGTGATAC
Sechum album	THTTTT－－AT	TGACATAGCC	TCAAGTCATA	TCGTAAAATT	AGACTGATAC
Sectum eriocarpum $2 \mathrm{n}=14$	TサイTTVTM－AT	TGACATAGCC	TCAAGTCATA	TCGTAAAATT	AGACTTATAC
Sectum criocarpum $2 \mathrm{n}=20$	TTTTTTMTAT	TGACATAGCC	TCAAGTCATA	TCGTAAAATT	AGACTTATAC
Rosularia sempervivum	THTTTTMTAT	TGACATAGCC	TCAAGTCATA	TCGTAAAATT	AGACTGATAC
Sedum microcarpum	TTTTTTMTAT	TGACATAGCC	TCCAGTCATA	TCGTAAAATT	AGACTGATAC
Sechum hisponicum	TRTTTTM－AT	TGACATAGCC	TCAAGTCATA	GCGTAAAATT	AGACTGATAC
Sedum steludelii	TTTTTT－－AT	？GACA？AGCC	TCAAA？CATA	GCGTAAAATC	AGAC？GATAC
Sectum ince	TTTTTTMTAT	TGACATAGCC	TCAAGTCATC	TCGTAAAATT	AGACTGATAC
Prometheum aizoon	TTCTTTT－AT	TGACATAGCC	TCAAGTCATA	TCGTAAAATT	AGACTGATAC
Prometheum sempervivoides	TVTTTVT－AT	TGACATAGCC	TCAAGTCATA	TCGTAAAATT	AGACTGATAC

TABLE 2. (Continued).

Species	Sequence
	310
Phedinus's spurius	GGAGAGGATG [257 bp]
Sectum acre	GGAAAGGATG [281 bp]
Seclum alhum	GGAAAGGATA [261 bp]
Seclum eriocarpum $2 \mathrm{n}=14$	GGAAAGGATG [179 bp]
Sectum criocarpum $2 \mathrm{n}=20$	GGAAAGGATG [180 bp]
Rosularia sempervivum	GGGAAGGATG [263 bp]
Sedum microcarpum	AGAAAGGGTG [249 bp]
Seclum hispanicum	GGAAAGGATG [259 bp]
Sedum steudelii	GGAAAGGAGG [260 bp]
Sectum ince	GGAAAGGATG [264 bp]
Prometheum aizoon	GGAAAGGATG [261 bp]
Prometheum sempervivoides	GGAAAGGATG [261 bp]

FlG. 3. Strict consensus of the six most parsimonious Wagner trees (PAUP version 3.1.1. Branch and Bound option; Swofford, 1993) of the sequences presented in Table 2. using Phedimus spurius as outgroup. The tree has a length of 30 steps and a consistency index of 0.700 (including autapomorphies). Branch lengths (base substitutions) are indicated above the branches and the figures below the branches indicate bootstrap values (100 replicates).
also occurs in S. ince and strongly supports its inclusion in S. subgenus Gormania. The unique position of S. ince relative to the species of S. series Aithales and S. series Glauco-rubens is supported by four unique indels which separate it from S. eriocarpum and S. hispanicum, respectively. The two cytotypes of S. eriocarpum stand apart from all other taxa in this sample by a shared, large 107 bp deletion (position 78-184), whercas S. hispanicum is characterized by two unique indels, a 9 bp deletion (position 4856) and an 8 bp insertion (position 7986), respectively. Finally, S. ince contains a unique, small 4 bp deletion (position 4245).

CONCLUSIONS

The chloroplast DNA analysis indicates Sedum ince as the sister of a clade comprising Prometheum aizoon (Fenzl) A. Berger (\equiv Rosularia aizoon (Fenzl) A. Berger) and P. sempervivoides (M. Bieb.) H. Ohba (\equiv Sedum sempervivoides M. Bieb.). This clade represents the monophyletic genus Prometheum (A. Berger) H. Ohba which comprises about eight, perennial or hapaxanth (biennial), densely rosulate species with white, pink, red or yellow flowers (Ohba, 1978; 't Hart, 1995). Basal to S. ince are S. microcarpum and a clade comprising the two species of S. series Glauco-rubens. S. hispanicum and S. steudelii. The two cytotypes of S. eriocarpum, with $2 \mathrm{n}=14$ and $2 \mathrm{n}=20$, respectively, form a monophyletic clade that appears to be only distantly related to S. ince and S. series Glauco-rubens.

Cytologically the clade comprising Sedum ince, S. microcarpum, S. serics Glauco-
rubens, and Prometheum is surprisingly uniform considering the enormous cytological variation (particularly chromosome numbers) which is so characteristic for Sedum and related genera (Uhl, 1963; 't Hart, 1991). The basic chromosome number $\mathrm{x}=7$ occurs in 10 out of the 12 species of this lineage and the other two specics, Prometheum pilosum (M. Bieb.) H. Ohba (=Sedum pilosum M. Bieb.) and Sedum steudelii, both have a basic number of $\mathrm{x}=6$ as a result of two independent, descending dysploid changes (Moran, 1972; 't Hart, 1985; 't Hart \& Eggli, 1989; 't Hart \& Alpinar. 1991a). On the other hand, this clade is extremely diverse morphologically. The rosulate, slightly sympetalous specics of Prometheum form a distinct group and so do S. hispanicum and S. steudelii which form a comparium ('t Hart, 1991), whereas S. microcarpum is a highly specialized annual with 4-merous, haplostemonous flowers and 1 - to 2 -sceded carpels. Because S. ince is not clearly affiliated with any of these taxa we classify it in a new, monotypic scries, S. series Elegans.

Sedum serics Elegans 't Hart \& Alpınar, series nova

Plantae glanduloso-pubescentes. Folia alterna, oblonga vel linearia, obtusa. Flores 5 -meri. Scpala basin receptaculo adnata. Petala alba. Folliculi suberecti vel patentes. Semina apice acuta, testa costata.
Type species: Sedum ince 't Hart \& Alpınar.

ACKNOWLEDGEMENTS

The authors wish to thank Dr Jan F. Veldkamp (Leiden) for correcting the Latin diagnosis and Herman van der Klis for technical assistance with the cytological and molecular studies.

REFERENCES

BERGER. A. (1930). Crassulaceae. In: ENGLER, A. \& PRANTL, K. (eds) Die Natïrlichen Pflanzenfamilien, 2nd edn, 18a: 352 483. Leipzig: Verlag Wilhelm Engelmann.
BOISSIER, E. (1872). Flora Orientalis, 2. Geneva and Basel: H. Georg.
BÖTTCHER, W. \& JÄGER, E. J. (1984). Zur Interpretation der Verbreitung der Gattung Sedum L. (Crassulaceae) und ihrer Wuchsformtypen. Wiss. Z. Univ. Halle 33: 127-141.
CHAMBERLAIN. D. F. (1972). Sedum L. In: DAVIS, P. H. (ed.) Flora of Turkey and the East Aegean Islands, 4, pp. 224-243. Edinburgh: Edinburgh University Press.
FRÖDERSTRÖM. H. (1932). The genus Sedum L.. 3. Acta Horti Gotob. 7. app.: 1-125.
FRÖDERSTRÖM. H. (1936). The genus Sedum L., 4. Acta Ilorti Gotob. 10, app.: 1-262.
FRÖDERSTRÖM, H. (1960). Sedum longibracteatum. In: RECHINGER, K. H. Zur Flora von Syrien, Libanon und den angrenzenden türkischen Gebieten. Arkiv Bot. 5: 189-190.
GRISEBACH, A. (1843). Spicilegium Florae Rumelicae et Bithinicae, 1. Braunschweig.
KIM. J. H.. 'T HART, H. \& MES, T. H. M. (1996). The phylogenetic position of

East Asian Sedtm species (Crassulaceae) based on chloroplast DNA $t m L$ (UAA$\operatorname{trnF}(\mathrm{GAA})$ intergenic spacer sequences. Acta Bot. Neerl. 45: 309-321.
MORAN, R. (1972). The genus Meterostachys Nakai (Crassulaceae). Cat. Succ. J. 44: 262-273.
OHBA, H. (1978). Generic and infrageneric classification of the Old World Sedoideae (Crassulaceae). J. Fac. Sci., Univ. Tokyo, sect. 3, 12: 139198.
RECHINGER. K. H. fil. (1943). Flora Acgaea. Flora der Inseln und Halbinseln des ägäischen Meeres. Akad. Wiss. Math.-Naturwiss. Kl., Denkschr: 105:1924.
SWOFFORD, D. L. (1993). Phylogenetic Analysis Using Parsimony (PAUP), Version 3.1.1. Champaign, Illinois: Illinois Natural History Survey.
'T HART, H. (1985). Chromosome numbers in Sedum (Crassulaceae) from Greece. Willdenowia 15: 115-135.
'T HART. H. (1991). Evolution and classification of the European Sedum species (Crassulaceae). Flora Medit. 1: 3161.
'T HART. H. (1995). Infrafamilial and generic classification of the Crassulaceac. In: 'T HART, H. \& EGGLI, U. (eds) Evolution and Systematics of the Crassulaceac. pp. 159-173. Leiden: Backhuys Publishers.
'T HART, H. (1996). Variation in Sedum litoreum and the S. rubens complex (Crassulaceae): new names and combinations. Ot Sistematik Botanik Dergisi 2 (1995): 110.
'T HART, H. \& ALPINAR. K. (1991a). Biosystematic studies in Sedum (Crassulaccae) of Turkey. 1. Notes on four hitherto little known species collected in the western part of Anatolia. Willdenowia 21: 143-156.
*T HART, H. \& ALPINAR, K. (1991b). Biosystematic studics in Sedum (Crassulaceae) of Turkey: Morphological and cytological variation in S. pallidum and S. rubens. Bot. Chronika 10: 641-649.
'T HART, H. \& EGGLI, U. (1989). Cytotaxonomic studies in Rosularia (Crassulaceae). Bot. Hell. 98: 223-234.
'T HART, H. \& VAN HAM. R. C. H. J. (1991). Cytotaxonomic notes on Sedum (Crassulaceae) species of Israel. Israel J. Bot. 40: 323-329.
TABERLET, P., GIELLY, L., PAUTOU, G. \& BOUVET, J. (1991). Universal primers for amplification of three noncoding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105-1109.
UHL, C. H. (1963). Chromosomes and phylogeny of the Crassulaceae. Cact. Succ. J. Amer. 35: 80-84.

VAN HAM, R. C. H. J. \& 'T HART, H. (1998). Phylogenetic relationships in the Crassulaceae inferred from chloroplast DNA restriction site variation. Amer. J. Bot. 85: 123-134.
VAN HAM, R. C. H. J., 'T HART. H., MES, T. H. M. \& SANDBRINK. J. M. (1994). Molecular evolution of noncoding regions of the chloroplast genome in the Crassulaceae and related species. Curr. Genet. 25: 558-566.

[^0]: * Department of Plant Ecology and Evolutionary Biology, University of Utrecht, Padualaan 8, 3584 CII Utrecht. the Netherlands.
 + Department of Pharmaceutical Botany, Faculty of Pharmacy. Istanbul University, 34452 Istanbul, Turkey.

