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EVOLUTIONARY PATTERNS OF GENOME SIZE AND CHROMOSOME 
NUMBER VARIATION IN BEGONIACEAE

L. Campos-Domínguez  1,2,3*, J. Pellicer  4,5, A. Matthews  2,6, I. J. Leitch  4 
& C. A. Kidner  1,2

Cytological data resources are crucial to the study and understanding of the evolution of complex 
taxa. Recent research on the genus Begonia L. has provided a robust phylogenetic background for 
the analysis of evolutionary patterns across the group and has established that Begonia is variable 
in genome size and chromosome number. This paper provides an overview of the genome structural 
variation present in Begonia and an updated chromosome number and genome size dataset for the 
genus. Chromosome numbers of more than 400 species are presented and discussed within their 
current taxonomic and phylogenetic context. A more complete chromosome number dataset is 
available for Neotropical and Asian Begonia sections than for those from Africa. The distribution of 
chromosome numbers across phylogenetic trees supports the idea of Begonia sections as natural 
groups, because most variation is found between sections rather than within them. Some larger 
Begonia clades were found to have larger chromosome number variation. Moreover, groups with the 
most variable chromosome numbers belong to some of the taxonomically complex or unresolved 
Begonia sections. Genome size variation was found not to correlate with changes in chromosome 
number. It suggests that Begonia genome dynamics are caused not only by large-scale duplications, 
rearrangements, and changes in ploidy levels but also by changes in the repetitive fraction of 
the genome, which probably cause changes in chromosome size. This could potentially play an 
important role in species radiations.
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Introduction
Cytological data are essential for the understanding of evolution. Changes in chromosome 
number and structure can trigger speciation events by establishing nuclear incompatibilities 
that lead to crossing barriers (Lowry & Willis, 2010; Winterfeld et al., 2014; Baack et al., 
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2015). Events such as chromosomal rearrangements, polyploidy and dysploidy (gain or 
loss of single chromosomes through fusion or fission) are frequent in plant evolution 
(Wood et al., 2009; Winterfeld et al., 2020). Angiosperms have one of widest known ranges 
of chromosome numbers: from n = 2, described in approximately six species (Vanzela 
et al., 1996; Cremonini, 2005; Vimala et al., 2021) to n > 320 (Uhl, 1978). Cytogenetic and 
evolutionary studies have detected an ancient polyploidisation event in the early divergence 
of seed plants, as well as ancestral polyploidy events in the crown nodes of many 
angiosperm clades (Jiao et al., 2011; Li et al., 2015). A more recent study identified more 
than 100 whole-genome duplication events in angiosperms (Landis et al., 2018), illustrating 
the important role of chromosome change in many plant lineages.

Although changes in ploidy levels generate high levels of evolutionary novelty (Doyle & 
Coate, 2019) and have a widely established evolutionary role in the diversification of major 
angiosperm families (Stebbins, 1971; Husband & Sabara, 2004; Knight et al., 2005; Han et al., 
2020), dysploidy events are reported to be more frequent than polyploidy in flowering plants 
(Grant, 1981). Recent studies have shown that these events have strong evolutionary effects 
in some plant lineages, and that these types of chromosomal changes can persist longer 
than those arising from polyploidy (Escudero et al., 2014).

Studies of cytological variation across a taxonomic group provide broad information 
about its evolutionary history and can contribute new insights regarding species 
diversification events. The large and fast-growing genus Begonia has previously been 
reported to have highly variable chromosome numbers (Dewitte et al., 2009). The results 
of studies of genome structure within the Begoniaceae family may suggest how genome 
dynamics affect evolutionary patterns of diversification and speciation.

In lineages with stable chromosome counts, genome size changes due to repetitive DNA 
dynamics are responsible for genome size variation and evolution in most cases (Bennetzen 
et al., 2005). In angiosperms, genome size (traditionally also referred to as the C-value and 
defined as the amount of DNA in an unreplicated, gametophytic nucleus [the 1C value]) has 
been shown to have the widest range for any comparable group of eukaryotes: from 61 to 
148,852 Mbp (Schubert & Vu, 2016), a 2440-fold difference (Pellicer et al., 2018).

The evolutionary forces behind this variation have been widely studied (for reviews, see 
Schubert & Vu, 2016; Blommaert, 2020; Carta et al., 2020). Many studies have focused 
on C-value dynamics within a specific phylogenetic framework or taxonomic group. For 
example, C-value variation has been studied at the genus level in many genera, including 
Sorghum Moench. (Price et al., 2005), Cuscuta L. (Neumann et al., 2021) and Genlisea A.St.-
Hil. (Boutanaev & Nemchinov, 2020); at the family level in, for example, Liliaceae (Leitch et al., 
2007), Brassicaceae (Lysak et al., 2009), Orchidaceae (Leitch et al., 2009) and Melanthiaceae 
(Pellicer et al., 2014); and even at the order level, such as in Nymphaeales (Pellicer et al., 2013).

Kraaijevel (2010) studied the link between speciation rates and genome size and was 
able to link some genome reductions and expansions to the base of a number of species 
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radiations. However, the general pattern found was that higher diversification rates are 
observed in small-genome taxa. By contrast, Puttick et al. (2015) have suggested that the 
rate of genome size evolution, not genome size, is linked to speciation rates in angiosperms. 
This means that taxonomic groups with larger genome size variation, but not necessarily 
with larger genomes, have higher speciation rates (Puttick et al., 2015).

Dewitte et al. (2009) were the first to report Begonia C-values and highlighted the large 
variation found between even closely related species. Research into variation in genome 
sizes in Begonia, as well as the phylogenetic distribution of genome size data, will provide 
insights into genome dynamics not explained by changes in chromosome number or ploidy 
but probably driven by the presence, and the proliferation and elimination, of repetitive DNA.

Besides being one of the largest angiosperm genera in terms of number of species, the 
genus Begonia is taxonomically very complex, and some species and group relationships 
are still poorly resolved (Moonlight et al., 2018). Nevertheless, Moonlight et al. (2018) 
presented the most taxonomically complete genus-wide Begonia phylogeny to date and 
provided a sectional division of Begonia species as a “natural classification” for subgeneric 
divisions.

The results of studies of karyotype variation across this phylogeny can be used to reveal 
patterns of chromosome dynamics in this genus. Chromosome number variation in Begonia 
has been studied previously (Legro & Haegeman, 1971; Forrest, 2000; Hong-Zhe et al., 
2005a; Dewitte et al., 2009; Hughes et al., 2011; Peng et al., 2014a, 2014b). However, most 
of this research focused on exploring karyotype compatibility of commercial hybrids and 
on species descriptions. Although useful, these studies do not provide a broad overview 
of chromosome number variation across Begonia or the stability of these numbers across 
different Begonia clades. Other studies that have been carried out to investigate Begonia 
karyotype variation have focused mostly on specific sections or clades of the genus (Legro 
& Doorenbos, 1969; Oginuma & Peng, 2002; Kono et al., 2020, 2021a, 2021b), and hence fail 
to provide a holistic view across Begonia as a whole.

Dewitte (2010) compiled a small list of genus-wide chromosome data grouped by 
continent of origin and concluded that the karyotypic variation found made it impossible to 
assign a basic chromosome number within the genus. Dewitte’s work not only describes 
genome size variation, polyploidy, aneuploidy, and the presence of B chromosomes in this 
genus but also indicates that Begonia ‘subgroups’ could be characterised by particular 
chromosome numbers. Dewitte concluded, however, that a larger chromosome number 
dataset is needed to enable a deeper understanding of chromosome evolution in Begonia.

Over the past few years, several newly published descriptions of Begonia species have 
included karyotype information, and the number of species karyotyped has increased 
(Peng et al., 2017; Tseng et al., 2017; Liu et al., 2020). However, there are issues that make 
karyotype descriptions for this group difficult. For example, Begonia species have very small 
chromosomes (from 8.73 to 110 Mbp [a 12-fold variation], with a mean chromosome size of 
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32.8 Mbp; Dewitte et al., 2009), and counts can produce variable results due to the presence 
of satellite chromosomes and high levels of dysploidy, meaning that published values vary 
within species (see the Chromosome Counts Database: Rice et al., 2015).

Genome size variation in Begonia species has also been studied previously. Dewitte et al. 
(2009) used flow cytometry to estimate the genome sizes of 37 species and 23 Begonia 
hybrids. Their data showed a 7-fold range in C-values (from 0.23 to 1.46 pg/1C) and up to 
12-fold differences in chromosome size. Dewitte and coauthors highlighted for the first 
time the large variation in genome size in this genus, and suggested that this had arisen, 
in part, as a result of chromosome and genome size evolution following polyploidisation 
events involving chromosome number decreases and genome stabilisation (as previously 
suggested by Oginuma & Peng, 2002).

Although Dewitte et al. (2009) identified chromosome size trends when grouping species 
by continent, their species sampling was not large enough to provide a good overview of 
the evolution of this trait across Begonia. Certainly, additional genome size data to confirm 
these patterns, and further investigations to determine which genomic factors are triggering 
the distinctive genome dynamics within the different Begonia groups, would provide stronger 
insights regarding the impact of these genomic processes on the evolution of Begonia species.

In the present study, we aimed to address data knowledge gaps by collecting and 
curating all available Begonia chromosome number and genome size data available and to 
place this information within the most recent phylogenetic framework (Hughes et al., 2015–; 
Moonlight et al., 2018) to gain insights into genome size and chromosome number variation 
in the genus. By studying these changes across Begonia, we aimed to better understand the 
potential role of chromosome dynamics in the evolution of this megadiverse genus.

Materials and methods
Data collection, phylogenetic sorting and curation

Chromosome number and most genome size data were collected from literature. First, 
all available Begonia chromosome number and genome size data and sources were 
downloaded from the Chromosome Counts Database (Rice et al., 2015) and the plant C-value 
database (Pellicer & Leitch, 2020). Then, original data and those from additional sources 
were added to the datasets. All data were phylogenetically sorted by clade and section 
following Moonlight et al., (2018). Nomenclature and classifications follow the Royal Botanic 
Garden Edinburgh (RBGE) Begonia Resource Centre (Hughes et al., 2015–). Both datasets 
(chromosome numbers and C-values) are available as Supplementary tables 1 and 2.

For some Begonia species, different chromosome numbers have been reported 
by different sources. In such cases, only one value is represented in Figure 1 and 
Supplementary tables 1 and 2. These values are marked with an asterisk (*). In these cases, 
the following principles were used to select the value presented.
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• The chromosome number with the highest number of references.
• The chromosome number most common in the section of Begonia in which the species 

is placed (when the same number of references was found for different chromosome 
numbers).

• The lower value was selected when two chromosome numbers were reported an equal 
number of times and there was no consensus regarding chromosome number within 
the relevant section. Such cases are indicated by the presence of a plus sign (+) in the 
Dysploidy or B chromosome reported column of Supplementary table 1.

• When a difference involved a chromosome number reported by Heitz (1927), the Heitz 
number was discarded following Legro & Doorenbos (1969), who cited a “high incidence 
of incorrect results”.

Seven species in the chromosome number dataset have not been yet classified into a 
section (Begonia sect. ignota in Moonlight et al., 2018) and are therefore not included in 
Figures 1 and 2. Unnamed species (listed as Begonia sp.), horticultural hybrids, and taxa 
with several widely differing chromosome numbers and no consensus regarding them were 
not included in the dataset.

To avoid the frequent variation caused by polyploid species, basic chromosome numbers 
were assigned by reducing their ‘n’ to the greatest common divisor within each section. 
Polyploid species within sections are indicated in Supplementary table 1, and sections 
containing polyploid species are indicated in Figure 1.

For species with a range of reported C-values of the same ploidy level, a mean value was 
used. Data for Figures 1 and 2 were plotted using the R (v3.6.3) package ggplot2 (Wickham, 
2016).

Genome size estimation
At least three fresh leaves were collected from each Begoniaceae species growing at RBGE 
and selected for genome size analysis. The leaves were stored with damp tissue inside 
Ziploc resealable bags, and their nuclear DNA content (C-values) was measured the next day 
in the Jodrell Laboratory at the Royal Botanic Gardens, Kew. The measurement of nuclear 
DNA content followed the two-step protocol described by Pellicer & Leitch (2014).

Solanum lycopersicum ‘Stupiké polní rané’ was used as a reference standard for all 
samples except Begonia bipinnatifida J.J.Sm., for which Petroselinum crispum ‘Champion 
Moss Curled’ was used. For all samples, a sharp razor blade was used to chop intact leaf 
tissues in a Petri dish containing 500 μL of ice-cold Nuclei Extraction Buffer (CyStain PI 
Absolute P, Sysmex, Kobe, Japan). The crude suspension was filtered through a nylon 
mesh filter (30 μm pore size, CellTrics Disposable Filters, Sysmex). After a 5 min incubation 
period at room temperature, 2 mL of Staining Buffer (CyStain PI absolute P, Sysmex) was 
added.



6 Evolutionary patterns in Begoniaceae

Samples were then analysed using a CyFlow SL3 Partec flow cytometer (Sysmex-Partec, 
Munster, Germany) fitted with a 100 mW green lamp (532 nm solid-state Cobalt Samba 
laser; Cobolt AB, Solna, Sweden). The resulting flow histograms were analysed using the 
Partec software for flow cytometry FloMax 2.9 (Sysmex-Partec). At least 5000 nuclei were 
analysed per sample.

Three tissue samples of each species were analysed, and the nuclear DNA content of 
each sample was measured three times. The reference standards used in this study have 
the following 2C-values: Solanum lycopersicum, 2.0 pg (Praça-Fontes et al., 2011); and 
Petroselinum crispum, 4.5 pg DNA (Obermayer et al., 2002).

Nuclear DNA content was estimated using the formula

2CS = G1S * 2CST
G1ST

,

in which 2CS = sample 2C nuclear DNA content (pg); G1S = sample G1 fluorescence peak 
mean; 2CST = standard 2C nuclear DNA content (pg); and G1ST = standard G1 fluorescence 
peak mean.

DNA amounts in picograms were converted to the number of base pairs, using the 
conversion factor 1 pg DNA = 978 Mbp (Doležel et al., 2003).

Results and discussion
Cytological data compilation and geographical and taxonomic distribution

For this work, 419 chromosome number reports were obtained for 402 Begonia species 
and Hillebrandia sandwicensis Oliv., which is sister to Begonia (Moonlight et al., 2018; 
Supplementary table 1). The chromosome number data obtained represent 21% (37) of the 
currently described African species, 23% (157) of all current Neotropical species, and 18% 
(209) of all Asian Begonia. According to the Begonia Resource Centre (Hughes et al., 2015–, 
accessed 5 August 2021), there are currently 2032 species of Begonia. This means that 
chromosome numbers are known for only c.20% of the genus.

In the Begonia species classification of Moonlight et al. (2018), six African clades, two 
main Neotropical clades, and three main Asian clades are recognised. For each of these 
clades, the number of Begonia sections and species, as well as a cytological data summary, 
are presented in Table 1. A section-level data summary is presented in Supplementary 
table 3. Of the 70 Begonia sections, no chromosome number data were available for 23. In 
the Neotropical sections of Begonia, cytological data are lacking for 11 of the 33 sections; 
for Africa, 5 of 18 sections; and for Asia, 8 of 19 sections. For the remaining sections, the 
numbers of chromosome counts reported were highly variable (see Supplementary table 3 
and the bar chart in Figure 1).

Although the amount of available cytological data for each Begonia clade is variable, 
there is chromosome information on more than 10% of the species in the Neotropical and 
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Asian Begonia clades. For the African clades, however, we found that even though our data 
represent a good sample of African Begonia sections, there are few available chromosome 
counts per section in this group (between zero and 11 species per section with data). This 
could be due to the difficulty of keeping these species in cultivation. This group is well 
understood thanks to a systematic study on African Begonia (de Wilde, 1985); however, 
there have been no new studies contributing novel cytological data since that by Legro & 
Doorenbos (1969). New cytological studies on African Begonia would help elucidate the 
origins of the chromosome number variation found in Asian and Neotropical Begonia.

Across the Neotropical and Asian clades, Asian Begonia clades were found to have 
a lower proportion of karyotyped species. This could be due to Asian Begonia groups 
having the highest number of species, with some sections currently increasing in species 
numbers due to recent species discoveries (e.g. Mazo & Rubite, 2022; Randi et al., 2022). 
Nonetheless, some clades, such as Neotropical clade 2-i and Asian clade C, contain 
relatively high numbers of chromosome data (Figure 1). This is probably due to the 
presence in these clades of Begonia sections Gireoudia and Platycentrum, which are two of 
the largest and most widely studied Begonia sections (Burt-Utley, 1985; Tebbitt & Dickson, 
2000; Nguyen, 2004; Tebbitt et al., 2006; Dewitte et al., 2011; Ali, 2013; Twyford et al., 2013). 
For Begonia sect. Gireoudia, 111 species are currently described, and chromosome data 
are available for 43 of these (39% of the section); and for Begonia sect. Platycentrum, 211 
species are currently described and there are chromosome data for 54 of these (26% of the 
section). By contrast, the very large and phylogenetically unresolved Asian section Begonia 

Table 1. Chromosome number data arranged by the clades of Begonia recognised by Moonlight et al. 
(2018), including the number of sections and species in each clade, and the number of species whose 
chromosome counts and C-values were included in our datasets

Begonia clade No. of 
sections

No. of 
species

No. of species whose 
chromosome counts 

were included (%)

No. of species 
whose C-values 

were included (%)

Yellow-flowered African Begonia 6 58 9 (15.5) 0 (0)
Fleshy-fruited African Begonia 5 56 3 (7.1) 0 (0)
Malagasy Begonia 3 36 15 (41.6) 0 (0)
Socotran Begonia 1 2 1 (50) 1 (50)
Seasonally dry African Begonia 1 2 10 5 (50) 1 (10)
Seasonally dry African Begonia 2 1 12 4 (33.3) 2 (16)
Early diverging Asian Begonia 3 31 5 (16.1) 0 (0)
Asian clade C 8 373 76 (20.3) 25 (6.7)
Asian clade D 8 740 121 (16.4) 9 (1.2)
Neotropical clade 1 8 201 55 (27.3) 15 (7.4)
Neotropical clade 2 (NC2) 24 463 101 (21.8) 25 (5.3)

NC2-i 4 135 50 (37) 15 (11)
NC2-ii 15 225 32 (14) 7 (3)
NC2-iii 5 103 19 (18) 3 (2)
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sect. Petermannia has 455 species, and chromosome numbers have been reported for 
only 11 of these (i.e. 2.4% of the section); section-specific phylogenetic, taxonomic and 
cytological research is clearly required for this inadequately studied section.

Also presented in this paper are genome size data obtained from various sources (e.g. 
Dewitte et al., 2009; Du et al., 2018; and the Plant DNA C-values database, Pellicer & Leitch, 
2020), as well as some previously unpublished Begonia C-values (see Supplementary table 
2). The species were grouped into sections and clades and paired with their chromosome 
count, if available (the full dataset is presented in Supplementary table 2). In total, 84 
genome size estimates were collected, 80 of Begonia species and one of Hillebrandia 
sandwicensis. The phylogenetic distribution of the data by clade and section is shown in 
Table 1 and Supplementary table 2.

A total of 21 newly generated and unpublished genome sizes are included, as well as 
another 63 obtained from existing sources. Our dataset includes genome size data for four 
African species, 32 Neotropical species, and 33 Asian species. As previously described by 
Dewitte et al. (2009), high levels of variation are found in Begonia genome size data. Our 
compiled C-value data range from 245 Mbp/1C in Begonia ulmifolia Willd. (n = 15, Begonia 
sect. Donaldia, Neotropical clade 1) to 2497 Mbp/1C in B. formosana (Hayata) Masam. 
(n = 30, Begonia sect. Platycentrum, Asian clade C). This represents a 2-fold difference in 
chromosome number but more than a 10-fold difference in genome size, and suggests that 
much of the variation observed in nuclear DNA content in Begonia arises from changes in 
the amount of repetitive DNA. These changes are the result of the activity of transposable 
elements, as well as changes in copy number and length of repetitive DNA regions via 
unequal recombination (e.g. Schubert & Vu, 2016).

Chromosome number variation in Begonia
Although there is variation throughout the family, within each Begonia clade many species 
share a similar haploid chromosome number (e.g. n = 14 in Neotropical clade 2-i; Figure 1), 
and most sections identified in the Moonlight et al. (2018) classification have conserved 
basic chromosome numbers with a variable number of outliers. These findings highlight that 
there is phylogenetic signal at section level in Begonia chromosome numbers and supports 
Moonlight and colleagues’ natural sectional classification. Table 2 summarises the range 
of chromosome numbers found in each clade and section, as well as the most common 
haploid numbers.

The number of sections with polyploid species was observed to be higher in Asian 
clades C and D, as well as in the Neotropical clades, compared with other clades. This 
could be due to the presence of more speciose sections in these clades, although such 
ploidy variation was not found to be associated with higher species numbers in sections 
within the Neotropical clades. Asian sections are generally larger, and the presence of 
polyploid species and within-species chromosome number variation in some of them is 
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striking compared with other larger sections. Among the five largest Begonia sections 
(with more than 100 species), three of them are Asian (Begonia sections Petermannia, 
Platycentrum and Diploclinium) and two are Neotropical (Begonia sections Pritzelia and 
Gireoudia).

Figure 1. Variation in haploid chromosome number across the Begonia sections recognised by 
Moonlight et al. (2018) and their chromosome data. Boxes in the box plot are grouped by clade. The 
colours indicate the continent where these sections are found. Bar charts indicate the proportion of the 
section with known chromosome counts. Dots indicate sections with polyploid species or with species 
with known interspecific chromosome number variation (including B chromosomes). AC-C, Asian clade 
C; AC-D, Asian clade D; EDAB, early diverging Asian Begonia; FFAB, fleshy-fruited African Begonia; MB, 
Malagasy Begonia; NC1, Neotropical clade 1; NC2-i, Neotropical clade 2-i; NC2-ii, Neotropical clade 
2-ii; NC2-iii, Neotropical clade 2-iii; SB, Socotran Begonia; SDAAB1, seasonally dry adapted African 
Begonia 1; SDAAB2, seasonally dry adapted African Begonia 2; YFAB, yellow-flowered African Begonia. 
* Unresolved or polyphyletic in the phylogeny of Moonlight et al. (2018).
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Table 2. Chromosome number ranges and most common values per clade and section of Begoniaa

Continent and Begonia clade n range Commonest n Begonia section n range Commonest n

Africa
Fleshy-fruited African 
Begonia

13–19 19 Erminea – 19
Mezierea – 13
Muscibegonia – –
Nerviplacentaria – –
Quadrilobaria – 19

Malagasy Begonia 18–19 19 Baccabegonia – 18
Squamibegonia – 19
Tetraphila 18–19 19

Socotran Begonia – 14 Peltaugustia – 14
Seasonally dry adapted 
African Begonia 1

11–19 13, 19 Rostrobegonia 13–19 13, 19
Sexalaria – 11

Seasonally dry adapted 
African Begonia 2

– 13 Augustia – 13

Yellow-flowered African 
Begonia

13–19 19 Chasmophila – –
Cristasemen – 19
Exalabegonia – –
Filicibegonia – 19
Loasibegonia 13–17 13, 17
Scutobegonia – –

America
Neotropical clade 1 12–30 28 Donaldia – 15

Gaerdtia – 28
Kollmannia – –
Latistigma 28–30 30
Pritzelia 12–27 14
Stellandrae – –
Tetrachia 24–26 24, 26
Wageneria – 19

Neotropical clade 2-i – 14 Gireoudia – 14
Parietoplacentaria – 14
Quadriperigonia – 14
Urniformia – 14

Neotropical clade 2-ii 11–28 13, 28 Astrothrix – –
Begonia 10–21 13
Casparya – –
Cyathocnemis – 26
Doratometra 12–14 12, 13, 14
Ephemera – 17
Hydristyles – 21
Lepsia 13–15 15
Microtuberosa – –
Pereira – 28
Pilderia – –
Rossmannia – –
Ruizopavonia – –
Solananthera – 28
Trachelocarpus – 28
Warburgina – –
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The available chromosome count data for Begonia sect. Petermannia are not 
representative enough to allow comparisons with other sections (11/455 species); however, 
the other two Asian sections were found to have a wider range of chromosome numbers, 
and larger chromosome number variation, compared with the larger Neotropical sections 
(see Figure 1). Whether the more highly dynamic karyotypes in Asian Begonia are associated 
with higher speciation rates is difficult to tell from the available data. More cytological data, 
as well as further studies to explore the frequency of hybridisation and polyploidisation 
events in the highly speciose sections in these clades, are required to help address this 
question. Moreover, dynamic karyotypes are probably not the only driver of speciation in 
Asian Begonia, because other large sections, such as Begonia sect. Coelocentrum, present 
more stable chromosome numbers but large variation in genome size.

Fewer polyploidy events within sections are found in Neotropical clade 1 than in 
Neotropical clade 2. Although chromosome numbers across the Neotropical clades are 
generally variable (n = 12–30, Table 2), two of the most common numbers in our dataset 
are n = 14 and n = 28, and therefore we suggest x = 14 as the basic number for Neotropical 
Begonia as a whole. There are two clades, Neotropical clade 1 and Neotropical clade 2-ii, 

Continent and Begonia clade n range Commonest n Begonia section n range Commonest n

Neotropical clade 2-iii 13–16 14 Australes 13–14 14
Barya – –
Eupetalum – 14
Gobenia – –
Knesebeckia – 14

Asia
Early diverging Asian 
Begonia

14–15 15 Flocciferae – 15
Haagea – 15
Reichenheimia 14–15 15

Asian clade C 8–41 11 Alicida – –
Apterobegonia – –
Diploclinium 9–23 9, 12
Lauchea – 28
Monophyllon – –
Parvibegonia 11–14 11, 14
Platycentrum 8–19 11
Putzeysia – –

Asian clade D 11–18 15 Baryandra 13–18 15
Bracteibegonia – –
Coelocentrum 15–18 15
Jackia 11–17 11, 12, 15, 17
Oligandrae – –
Petermannia 11–18 15
Ridleyella – –
Symbegonia – –

a Groups for which no variation or cytological data were found are indicated by an en rule (–).

Table 2. (Continued)
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that have sections with haploid number n = 28 (x = 14), which probably implicates polyploidy 
events across Neotropical Begonia. The evolutionary history of these clades indicates 
that they arise from two different Begonia dispersal events from Africa to the Neotropics 
(Moonlight et al., 2015, 2018), which suggests that these clades have not only different 
levels of dysploidy (hence the variation of n = 14 or 28 ± 1/2/3 across Neotropical sections 
such as Begonia sect. Latistigma [n = 28, 30], Begonia sect. Begonia [n = 13, 14], Begonia 
sect. Doratometra [n = 12, 13, 15] and Begonia sect. Australes [n = 13, 14, 17]) but also 
different independent polyploidisation events.

Neotropical clades 1 and 2-ii were also found to have larger chromosome count variation 
(Table 2), which could indicate that polyploidy events were in many cases followed by dysploidy, 
mainly chromosome loss and/or genome reduction. This is documented as a common 
phenomenon after polyploidisation (Mandáková & Lysak, 2018). From these two clades, only 
a few sections, such as Begonia sect. Latistigma, Pritzelia, Begonia and Australes, have enough 
chromosome counts to enable exploration of their distribution on a species-level phylogenetic 
tree (Moonlight et al., 2018; Supplementary figure 1). These data suggest a high number 
of polyploidy events in Begonia sect. Begonia, as well as some phylogenetic signal in the 
chromosome numbers of sections Pritzelia and Latistigma. Although most studied species were 
reported to have 2n = 56, Begonia sect. Pritzelia is the largest Neotropical section, and therefore 
a more complete understanding of phylogenetic relationships between species as well as more 
cytological data would help shed light on chromosome evolution within this group.

The range of chromosome numbers in African Begonia is considerably narrower than 
the ranges in the Neotropical and Asian clades (see Figure 1). There are three common 
karyotypes observed in African Begonia: (i) n = 13 (in nine species belonging to the clades 
of seasonally dry adapted African Begonia [SDAAB] 1 and 2, yellow-flowered African Begonia 
[YFAB] and fleshy-fruited African Begonia [FFAB]); (ii) n = 18 (in 10 species from the Malagasy 
Begonia [MB] clade); and (iii) n = 19 (in 13 species in the FFAB, MB, SDAAB1 and YFAB clades). 
Despite within-section variation in African Begonia being rare, there does not seem to be one 
single basic chromosome number for all African Begonia species; n = 19 is most frequent 
in the early diverging clades, n = 13 is most abundant in the sister clades of the larger Asian 
clade and Neotropical clade 1 (Begonia sections Augustia, Sexalaria and Rostrobegonia), and 
n = 14 in the sister clade to Neotropical clade 2 (Begonia sect. Peltaugustia).

Two African sections were found to have within-section chromosome number variation: 
Begonia sect. Tetraphila and Begonia sect. Rostrobegonia. For these sections, further 
cytogenetic data are clearly needed to elucidate their basic chromosome numbers. A 
Begonia sect. Tetraphila phylogeny (Moonlight et al., 2018) with chromosome numbers 
mapped onto it is shown in Supplementary figure 2. This indicates at least two different 
chromosome loss-or-gain events between n = 36 and n = 38.

Chromosome count variation is larger in Asian Begonia clades than in other Begonia 
clades. These include some very species-rich, taxonomically complex and non-monophyletic 
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sections (Moonlight et al., 2018). Although the sample sizes are different and there are 
outliers, the early diverging Asian Begonia (EDAB) clade and the Asian clades C and D have 
n = 11 and n = 15 as their most common haploid chromosome numbers, respectively (see 
Table 2 and Figure 1). There is large variation within Asian clades C and D, but 46% and 
76% of the species analysed in these respective clades retained these karyotypes. However, 
it must be acknowledged that these may be only considered basic number candidates, 
because our dataset is biased by over-representation in sections such as Begonia sect. 
Coelocentrum (84 species) and Begonia sect. Baryandra (79 species) in Asian clade D (which 
have n = 15 in 44 and 23 of the species, respectively), and Begonia sect. Platycentrum (196 
species) in Asian clade C (n = 11 in 54 species).

By contrast, other large Asian sections, such as Petermannia (451 species) and Jackia 
(60 species), were found to have much wider variation in chromosome number but with 
much lower sampling. Greater and more phylogenetically balanced sampling will be needed 
to determine whether n = 11 and n = 15 are the basic chromosome numbers of these 
Begonia clades. Moreover, the high number of outliers in these clades also indicates that 
dysploidy is frequent in some Asian Begonia sections. Species-level data could be explored 
in a phylogenetic context only for sections Platycentrum and Petermannia (Supplementary 
figure 3), again showing some phylogenetic signal in chromosome number distributions.

Although some variation can be found in most of the main Asian Begonia sections, in 
sections Jackia, Diploclinium and Petermannia the variation was found to be larger, but this 
may be for different reasons in different sections. Begonia sect. Jackia is composed of 
60 species, but we have chromosome data for only eight species, and these were variable 
(n = 12, 15, 17 and 22). Because chromosome counts have been reported for only 13% of 
the species in this section, additional data for this section could help resolve its karyotype 
evolutionary history and confirm or refute the idea that the more limited chromosome 
number variation in Begonia sect. Jackia compared with Begonia sect. Diploclinium and 
Begonia sect. Petermannia is only due to limited data availability.

Chromosome data for Begonia sect. Diploclinium are available for nearly 20% of the 113 
species in this section and show that they vary extensively (i.e. n = 9, 11, 12, 13, 14, 15, 16 
and 23). Although the species in this section are morphologically similar, this group is not 
a “natural” taxon (as discussed in Moonlight et al., 2018). This section could, however, have 
abnormally high rates of chromosomal change. For Begonia sect. Petermannia (the largest 
section, having 455 species), chromosome data were available for just 11 species (2% of 
the species) and show much less variation (n = 11, 15 and 18); however, the section is too 
under-sampled for any firm conclusions to be drawn from this finding. The phylogeny of 
Moonlight et al. (2018) indicates that Begonia sections Diploclinium and Petermannia are 
currently polyphyletic, and this is supported by chromosome data presented here. Additional 
morphological and molecular phylogenetic work is clearly needed to help recircumscribe 
these taxa into natural groups.
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Asian Begonia species make up the largest and most species-diverse sections, and most 
of these are not fully resolved in Moonlight et al. (2018). However, recent research focused 
on chromosome count variation across selected Asian sections has provided complete 
datasets and phylogenies that allow analysis of the chromosome evolution of specific 
sections (e.g. Begonia sect. Coelocentrum, Kono et al., 2020; Baryandra, Kono et al., 2021a; 
Diploclinium, Kono et al., 2021b). These studies provide a good overview of chromosome 
evolution throughout these sections, confirming that Begonia sect. Coelocentrum species 
have a stable haploid chromosome number of n = 15, whereas Begonia sections Baryandra 
and Diploclinium were found to have wider variation in chromosome counts, due to different 
chromosome gain-or-loss events across their evolutionary history. Other complex and large 
Asian Begonia sections, such as Begonia sections Petermannia and Platycentrum, would also 
benefit from such in-depth studies.

In most large plant genera, chromosome number information on 22% of the species 
and most clades and sections would be enough to shed light on their karyotype evolution 
and basic chromosome numbers. The large genus Astragalus L. was also found to have 
karyotype variation and high levels of dysploidy. Chromosome numbers from n = 6 to n = 45 
have been described in 836 karyotyped species, representing 27% of the genus according 
to the Chromosome Counts Database (Rice et al., 2015) and the Plants of the World Online 
database (POWO, 2022). However, a clear basic number is inferred from these data of x = 8, 
found in nearly the 80% of its karyotyped species. Regarding other examples of large genera, 
such as Bulbophyllum Thouars (2114 species in total, only 89 with chromosome numbers 
that oscillate between n = 18 and n = 24, but n = 19 has been reported for 85% of karyotyped 
species) and Psychotria L. (1641 species in total, only 30 with accepted chromosome 
numbers varying from n = 11 to n = 66, but 11 is the basic number in 85% of karyotyped 
species), karyotypes have been published for only 2–4% of their species (Rice et al., 2015; 
POWO, 2022).

Other larger genera, such as Carex L. and Euphorbia L., are also examples of large and 
taxonomically complex plant groups that are similar to Begonia in this context. Carex has 
2002 species, but chromosome counts are available for only 590 (30% of the genus; Rice 
et al., 2015; POWO, 2022), and no basic chromosome number can be inferred for the whole 
genus. According to Więcław et al. (2020), this genus rarely presents a wide variation in 
chromosome counts at either the intraspecific or sectional level, but haploid numbers are 
variable between sections or subsections. In most cases this is similar to Begonia, in which 
we also see chromosome number stability within sections (see Figure 1). However, frequent 
within-species chromosome number variation has been previously described for Begonia 
(Dewitte et al., 2009).

It must also be taken into account that Carex has holocentric chromosomes (Greilhuber, 
1995). Holocentric chromosomes can stabilise chromosome fragments, which can facilitate 
karyotypic rearrangements (Escudero et al., 2012). This chromosomal instability may 
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contribute to the lack of clarity and consensus in establishing a basic chromosome number 
for Carex. However, no holocentric chromosomes have previously been reported in Begonia, 
so its karyotypic variation cannot be attributed to this trait.

In the case of Euphorbia, which has 1976 species, 261 (13%) karyotypes have been 
published (Rice et al., 2015; POWO, 2022). This genus was found to have a wide range of 
haploid chromosome numbers (n = 6 to n = 100), but there is no basic number or clear 
consensus on its karyotype evolution. Additionally, genome size variation in Euphorbia 
shows a 48-fold difference (342 to 140,800 Mbp, Pellicer & Leitch, 2020). There have not 
been many studies on the cause of this genomic variation, but previous research has 
established that although natural hybridisation is infrequent in Euphorbia (Sheidai et al., 
2010), aneuploidy and polyploidy have played a role in Euphorbia speciation (Perry, 1943).

Even for large genera such as Carex and Euphorbia with such variation in chromosome 
counts, it is rare to find in-depth, genus-level research. A genus-wide assessment of 
cytological data has been carried out for Solanum L. (Chiarini et al., 2018), for which 
chromosome counts were reported for 506 species (52% of the genus). However, little 
variation is found, the basic number being x = 12 in 97% of the species for which cytological 
data are available. Comparison of Begoniaceae data with cytological data from other 
species-rich genera in other families (Rice et al., 2015; POWO, 2022) suggests that it is very 
likely that Begonia cytology is not under-studied but rather that this genus has a more complex 
chromosome evolutionary history that is not found in most of the other megadiverse genera.

Genome size variation in Begonia
Of the 81 species for which genome size data are presented in this paper, chromosome 
counts are also available for 72 (Supplementary table 2). Figure 2 shows the relationship 
between their haploid genome size (Mbp) and haploid chromosome number. Our C-value 
dataset includes very few African species, and therefore little variation can be observed. 
The genomes of African Begonia species have sizes between 360 and 630 Mbp/1C, which is 
greater than for the Hillebrandia sandwicensis genome (332.6 Mbp/1C). Additional genome 
size data across African Begonia clades would provide a better overview of genome size 
evolution and stability in the early diverging Begonia clades.

Published data show no correlation (R2 = 0.02, p = 0.87) between chromosome number 
and genome size in Begonia. Although C-value data are available for only a small number 
of species in the genus, this dataset indicates that sections with conserved chromosome 
numbers, such as Platycentrum (211 species), Coelocentrum (86 species), Ephemera (15 
species), Gireoudia (111 species), Petermannia (455 species) and Pritzelia (158 species), 
have variable genome sizes. This suggests that it is highly likely that these genome size 
differences are due to variation in repetitive elements. Most of these sections have the 
highest number of species and represent recent and rapid Begonia species radiations 
(Moonlight et al., 2018); they are therefore good model groups with which to test the 
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Figure 2. Genome sizes and chromosome numbers of 64 Begonia species and Hillebrandia 
sandwicensis. The sources of the data used to create this scatter plot are specified in Supplementary 
table 2. Species in the same sections are enclosed within an ellipse. Colours indicate the continent 
where each species is found. The Hillebrandia data point is labelled as ‘Outgroup’.

influence of repetitive DNA and transposable elements on Begonia speciation events. 
In-depth genomic studies are needed to address this question.

Whether Neotropical and Asian radiations were found to have wider variation in genome 
sizes because they have more variable repetitive fractions in their genomes or because of 
sampling bias is difficult to know. The uneven sampling throughout the genus means that 
sections such as Platycentrum highly over-represented, and therefore the variation observed 
in Asian species is probably wider. The Asian Begonia clade C has a range of C-values from 
367 Mbp to 2497 Mbp and the greatest representation of species in our dataset (33% of the 
species included belong to this clade). The variation observed here could also be present in 
other clades but not yet observed because of the lower sampling; clearly, more C-value data 
are needed across the genus. Because chromosome number variation is also high in this 
clade, we can confirm that species in Asian clade C have undergone high levels of genome 
structural variation, such as chromosomal gain and loss and polyploidisation, as well as 
marked genome size dynamics.
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Neotropical species, with the exception of species in Begonia sect. Australes, may be 
characterised by having smaller genomes than those of Asian species (see Figure 2). 
Genome sizes of Neotropical species also seem less variable than those of Asian species. 
This suggests that there may be some phylogenetic signal in genome size in Neotropical 
radiations. However, because genome size variation changes across the phylogeny, such 
changes do not overlap with changes in chromosome number.

Other events driving chromosome size variation must play a role in the genome evolution 
of these species. The Asian clades were found to have wider and overlapping ranges of DNA 
content, as well as higher chromosome numbers (see Figure 1), which suggests that large-
scale genome changes were common early in Neotropical radiations but have been rarer 
since, and that across all the Asian radiations there have been more recent changes in their 
genome structure. However, genome size variation found at a smaller scale within sections 
with stable chromosome numbers also indicates levels of transposition and genome 
dynamics in Neotropical Begonia. Further repetitive DNA studies across large Neotropical 
and Asian radiations with stable chromosome numbers would help elucidate the nature of 
this genome size variation and aid our understanding of their potential role in these large 
species radiations.

Conclusions
Karyotype evolution in Begonia has previously been shown to be complex, and no consensus 
on a basic chromosome number has been established using the available data (Dewitte, 
2010). In this paper, we have presented an updated summary of all chromosome number 
data that have been published in the Begoniaceae to date, including Begonia haploid 
chromosome numbers that range from n = 7 to n = 41.

The variable levels of chromosome number variation across other large angiosperm groups 
suggest that chromosome and ploidy changes are not necessarily involved in large species 
radiations. In the case of Begonia, it seems that higher rates of ploidy or chromosome number 
changes could be present in some of the larger sections. However, this is not the case in 
all the larger or more recent radiations, and in-depth, section-specific studies that involve 
investigation of hybridisation patterns and interspecific chromosomal variation would be 
required to further understand the role of these events in the evolution of Begonia groups.

This paper provides an updated genus-wide cytological dataset of Begoniaceae, with 
chromosome count data representing almost 20% of the genus, and genome size data for 
81 species (4% of all Begonia species). The phylogenetic distribution of these cytological 
data (based on the latest genus-wide sectional classification, Moonlight et al., 2018) 
supports the idea of many Begonia sections as natural groups. Moreover, although the 
available data are not evenly spread across the phylogeny or the geographical distribution 
of the genus, our results suggest that chromosome number variation may be less variable 
in African Begonia species, whereas different levels of variation are seen across and within 
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species belonging to the Neotropical and Asian Begonia sections. For most large Begonia 
sections (> 70 species), more in-depth phylogenetic and cytogenetic studies are needed to 
help disentangle the origin and evolution of the large chromosome number variation already 
apparent in some sections (e.g. Begonia sections Pritzelia, Petermannia and Platycentrum). 
For other large radiations, such as those in Begonia sections Coelocentrum and Gireoudia, 
chromosome numbers appear to be highly stable but genome sizes are variable, highlighting 
a potential role of repetitive DNA in recent Begonia radiations.
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Supplementary table 1. Chromosome counts dataset for Begonia: all chromosome numbers (2n) 
available for use in the present study and their sectional basic number. Each species is classified by 
section and clade. Each chromosome number record includes the original reference(s) in which the 
number was reported. The presence of polyploid species in the section, as well as dysploidy and B 
chromosomes reported, are also recorded. EDAB, early diverging Asian Begonia; FFAB, fleshy-fruited 
African Begonia; MB, Malagasy Begonia; NC1, Neotropical clade 1; NC2-i, Neotropical clade 2-i; NC2-ii, 
Neotropical clade 2-ii; NC2-iii, Neotropical clade 2-iii; SB, Socotran Begonia; SDAAB1, seasonally dry 
adapted African Begonia 1; SDAAB2, seasonally dry adapted African Begonia 2; YFAB, yellow-flowered 
African Begonia. * Represented in Figures 1 and 2, and Tables 1 and 2.

Supplementary table 2. Genome size dataset for Begonia and Hillebrandia sandwicensis. All genome 
size values (1C values) found in the literature, plus the original values reported in this paper for the 
first time (‘Present study’). Species are classified by section and clade, and associated chromosome 
numbers are specified if present in Supplementary table 1. EDAB, early diverging Asian Begonia; FFAB, 
fleshy-fruited African Begonia; MB, Malagasy Begonia; NC1, Neotropical clade 1; NC2-i, Neotropical 
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clade 2-i; NC2-ii, Neotropical clade 2-ii; NC2-iii, Neotropical clade 2-iii; SB, Socotran Begonia; SDAAB1, 
seasonally dry adapted African Begonia 1; SDAAB2, seasonally dry adapted African Begonia 2; YFAB, 
yellow-flowered African Begonia.

Supplementary table 3. Begonia sections and the proportion for which chromosome counts are available. 
EDAB, early diverging Asian Begonia; FFAB, fleshy-fruited African Begonia; MB, Malagasy Begonia; NC1, 
Neotropical clade 1; NC2-i, Neotropical clade 2-i; NC2-ii, Neotropical clade 2-ii; NC2-iii, Neotropical clade 
2-iii; SB, Socotran Begonia; SDAAB1, seasonally dry adapted African Begonia 1; SDAAB2, seasonally dry 
adapted African Begonia 2; YFAB, yellow-flowered African Begonia. a As of September 2021.

Supplementary figure 1. Species-level phylogeny of Neotropical Begonia sections recognised by 
Moonlight et al. (2018): A, Pritzelia; B, Australes; and C, Begonia. Chromosome number values (2n) are 
placed next to each species for which data are available. The colours of the boxes indicate different 
chromosome number values.

Supplementary figure 2. Species-level phylogeny of African Begonia sect. Tetraphila recognised by 
Moonlight et al. (2018). Chromosome number values (2n) are placed next to each species for which 
data are available. The colours of the boxes indicate different chromosome number values.

Supplementary figure 3. Species-level phylogeny recognised by Moonlight et al. (2018) of Asian 
Begonia sections: A, Platycentrum; B, Petermannia. Chromosome number values (2n) are placed next 
to each species for which data are available. The colours of the boxes indicate different chromosome 
number values.
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